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USA
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Abstract. In this paper we introduce two-paraboson coherent states (TPCS) defined as
eigenstates of a linear combination of parabose creation and annihilation operators. The
wavefunctions of TPCS in various bases are explicitly calculated and the basic squeezing
properties of these states are discussed.

1. Introduction

In recent years there has been increasing interest in various generalized statistics, which
include parastatistics [1], anyon statistics [2], infinite statistics [3] and the statistics
of quons [4] (particles whose creation and annihilation operators obey the q-deformed
commutation relations). The main motivation comes from their potential applications in
condensed matter physics, such as to the theory of fractional quantum Hall effect [5] and to
the theory of anyon superconductivity [6]. Of these generalizations, parastatistics was first
introduced by H S Green four decades ago. This generalization, carried out at the level of
the algebra of creation and annihilation operators, involves trilinear commutation relations in
place of the bilinear relations that characterize Bose and Fermi systems. In addition, states
in a parastatistics theory belong to many-dimensional representations of permutation group,
this contrasts with the cases of Bose and Fermi statistics in which only the one-dimensional
representations occur. In fact, parastatistics is a perfectly consistent local quantum theory.
All norms in parastatistics theory are positive, there are no negative probabilities.

In order to effectively develop the possible applications of paraststistics in condensed
matter physics, it is necessary to know the character of paraststistics as much as possible.
At the early days of parastatistics, the structure of Fock space [7] and the coherent state
representation [10] for parasystems were extensively studied. A few years ago, the canonical
partition function for a non-trivial parasystem, a parasystem with order two, was derived [8],
and the corresponding results for any order were obtained only at two years ago [9].

To our knowledge, the paraboson coherent state was investigated many years ago [10],
another important kind of non-classical state, however, squeezed state for parabosons has
never been appeared in literature. In this present paper we construct the two-paraboson
coherent state (TPCS) in section 2, which are defined as eigenstates of a linear combination
of parabose creation and annihilation operators. We calculate the wavefunctions of TPCS
in various bases in section 3 and discuss their basic squeezing properties in section 4.

† On leave of absence from: Department of Modern Physics, University of Science and Technology of China,
Hefei 230026, People’s Republic of China.
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2. Two-paraboson coherent states

The Fock space of a parabose system of orderp, wherep is a non-negative integer, is
characterized by the trilinear commutation relations (for the sake of simplicity, only one
degree of freedom of paraboson is considered in this paper)[

a, {a†, a}] = 2a [a, a†2] = 2a† [a, a2] = 0 (1)

and the supplementary conditions

a|0〉 = 0 aa†|0〉 = p|0〉 (2)

where|0〉 is a unique vaccum state of the Fock space. Consider a unitary operator

Uz = exp
(

1
2za

2− 1
2z
∗a†2

)
(3)

wherez = reiϕ is an arbitrary complex number. Inspection of the above operator shows
thatU †z = U−1

z = U−z. Using the trilinear commutation relations (1) we can perform the
following canonical transformation:

b = UzaU †z = µa + νa†

b† = Uza†U †z = µ∗a† + ν∗a
(4)

whereµ = µ∗ = coshr, ν = eiϕ sinhr, and it is obvious that|µ|2 − |ν|2 = 1. Of course,
the unitary transformation (4) ensures that the operatorsb andb† satisfy the same form of
trilinear commutation relations as that ofa anda†.

Similar to the ordinary boson case [11], the TPCS|β, z〉 can be defined to be the
eigenstates of the operatorb, which is a linear combinaiton of the parabose creation and
annihilation operatorsa† anda, with eigenvalueβ:

b|β, z〉 = β|β, z〉 (5)

whereβ is an arbitrary complex number. From equation (4) we see that the TPCS|β, z〉
can be written as

|β, z〉 = Uz|β〉 (6)

where|β〉 is the parabose coherent state defined by

|β〉 = E(|β|2)−1/2
∞∑
n=0

βn√
[n]!
|n〉 (7)

|n〉 being the number state of the parabose Fock space

|n〉 = (a†)n√
[n]!
|0〉 (8)

and

[n] = n+ p − 1

2

(
1− (−)n) E(x) =

∞∑
n=0

xn

[n]!
(9)

where [n]! = [n][n − 1] · · · [1] and [0]! ≡ 1. Whenp = 1, [n] and E(x) reduce to the
ordinary integern and the exponential function ex respectively. Equation (6) shows that
the state|β, z〉 involves two parametersβ andz. Whenz = 0, the state|β, z〉 becomes the
parabose coherent state|β〉.

From [10] we know that the parabose coherent states satisfy the completeness relation∫
d2β µ(|β|2)|β〉〈β| = 1 (10)
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where d2β = dx dy, x andy respectively being the real and imaginary parts ofβ, and the
integration is performed over the whole complexβ plane. The integration weight function
µ(t) in (10) is defined by

µ(t) = E(t)

2π

∫ ∞
−∞

ds M(s)e−its M(s) = 1

π

∞∑
n=0

[n]!

n!
(is)n. (11)

Multiplying equation (10) byUz on the left and byU †z on the right, we have∫
d2β µ(|β|2)|β, z〉〈β, z| = 1 (12)

which means that the TPCS satisfy the same completeness relation and any state vector|ψ〉
can be expended in terms of|β, z〉. Furthermore, the TPCS have the same scalar product
as the parabose coherent states

〈β, z|α, z〉 = E(β∗α)√
E(|α|2)E(|β|2)

(13)

which implies that the TPCS are normalized.

3. Wavefunctions in various bases

First let us determine the wavefunction of the TPCS|β, z〉 in the parabose coherent state
representation〈α|β, z〉.

We would like to point out that the parabose creation operatora† acting on a parabose
coherent state|α〉 gives

a†|α〉 = ∂

∂α
|α〉 +

(
α∗

2
+ p − 1

4α
+ p − 1

4α
E(|α|2)−1E(−|α|2)

)
|α〉 − p − 1

2α
| − α〉 (14)

which reduces to the ordinary case whenp = 1. Using this formula and (4), we have

β〈α|β, z〉 = β〈α|Uz|β〉 = 〈α|
(
a coshr + a†e−iϕ sinhr

)
Uz|β〉

=
[

coshr
∂

∂α∗
+ coshr

(
α

2
+ p − 1

4α∗
+ p − 1

4α∗
E(|α|2)−1E(−|α|2)

)

+ e−iϕ sinhr α∗
]
〈α|β, z〉 − p − 1

2α∗
coshr 〈−α|β, z〉. (15)

The solution of (15) is of the form

〈α|β, z〉 = K(α, β, β∗, r, ϕ)E(|α|2)−1/2E

(
α∗β

coshr

)
exp

(
−e−iϕ tanhr

α∗2

2

)
. (16)

We can use the unitarity ofUz to determine the functional form ofK. Substituting (16) in
〈α|Uz|β〉∗ = 〈β|U †z |α〉 = 〈β|U−z|α〉, we have

K∗(α, β, β∗, r, ϕ)E(|α|2)−1/2E

(
αβ∗

coshr

)
exp

(
−eiϕ tanhr

α2

2

)

= K(β, α, α∗, r, ϕ + π)E(|β|2)−1/2E

(
αβ∗

coshr

)
exp

(
e−iϕ tanhr

β∗2

2

)
. (17)
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The solution to this functional equation forK is

K(α, β, β∗, r, ϕ) = E(|β|2)−1/2 exp

(
eiϕ tanhr

β2

2

)
. (18)

Thus〈α|β, z〉 is of the form

〈α|β, z〉 = E(|α|2)−1/2E(|β|2)−1/2E

(
α∗β

coshr

)
exp

(
tanhr

eiϕβ2− e−iϕα∗2

2

)
. (19)

The normalization condition∫
d2α µ(|α|2) |〈α|β, z〉|2 = 1 (20)

gives another constant factor(coshr)−p/2 to the wavefunction〈α|β, z〉, so finally we have

〈α|β, z〉 = (coshr)−p/2E(|α|2)−1/2E(|β|2)−1/2E

(
α∗β

coshr

)
exp

(
tanhr

eiϕβ2− e−iϕα∗2

2

)
.

(21)

Whenp = 1, this〈α|β, z〉 will give the familiar wavefunction of two-photon coherent state
in ordinary coherent state representation [11].

In fact, there is another simple way to get the wavefunction (21). To see this, let us
introduce notationsK± andK0 defined by

K+ = 1
2a
†2 K− = 1

2a
2 K0 = 1

4{a†, a}. (22)

From the trilinear commutation relations (1) it is clear thatK± andK0 satisfy the su(1, 1)
Lie algebra relations

[K0,K±] = ±K± [K+,K−] = −2K0. (23)

Using the disentangling theorem of su(1, 1) [12], we have

Uz = exp

(
−e−iϕ tanhr

a†2

2

)
exp

(
− ln coshr

{a∗, a}
2

)
exp

(
eiϕ tanhr

a2

2

)
(24)

which leads to

〈α|β, z〉 = 〈α|Uz|β〉 = exp

(
tanhr

eiϕβ2− e−iϕα∗2

2

)
〈α| exp

(
− ln coshr

{a∗, a}
2

)
|β〉.

(25)

Substituting the parabose coherent state expression (7) in (25) and recalling that

{a†, a}|n〉 = ([n] + [n+ 1]
)|n〉 = (2n+ p)|n〉 (26)

we obtain

〈α|β, z〉 = E(|α|2)−1/2E(|β|2)−1/2 exp

(
tanhr

eiϕβ2− e−iϕα∗2

2

)

×
∞∑
n=0

(α∗β)n

[n]!
(coshr)−(2n+p)/2

= (coshr)−p/2E(|α|2)−1/2E(|β|2)−1/2E

(
α∗β

coshr

)

× exp

(
tanhr

eiϕβ2− e−iϕα∗2

2

)
(27)
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which coincides exactly with (21).
Now consider the wavefunction of the TPCS|β, z〉 in the parabose number representation

〈n|β, z〉. As a function of the variablesx and t , E(2xt) exp(−t2) can be expanded in a
power series oft :

E(2xt) exp(−t2) =
∞∑
n=0

H
(p)
n (x)

[n]!
tn |t | <∞ (28)

whereH(p)
n (x) is a deformation of thenth Hermite polynomial with argumentx

H(p)
n (x) = [n]!

[n/2]∑
l=0

(−)n(2x)n−2l

l![n− 2l]!
(29)

where the notation [k] on
∑

stands for the largest integer smaller than or equal tok. When
p = 1, H(p)

n (x) becomes the ordinary Hermite polynomial. Using equation (28) we have

E

(
α∗β

coshr

)
exp

(
−e−iϕ tanhr

α∗2

2

)
=
∞∑
n=0

( 1
2e−iϕ tanhr)n/2

[n]!
H(p)
n

(
βeiϕ/2

√
sinh 2r

α∗n
)
. (30)

Writing 〈α|β, z〉 =∑n〈α|n〉〈n|β, z〉 and using equations (7) and (28), we find that

〈n|β, z〉 = (coshr)−p/2([n]!)−1/2E(|β|2)−1/2
(

1
2e−iϕ tanhr

)n/2
× exp

(
eiϕ tanhr

β2

2

)
H(p)
n

(
βeiϕ/2

√
sinh 2r

)
. (31)

Whenz→ 0 (i.e. r → 0), the dominant term inH(p)
n is the first (l = 0) term, i.e.

H(p)
n

(
βeiϕ/2

√
sinh 2r

)∣∣∣∣
r→0

→
(

2βeiϕ/2

√
sinh 2r

)n
. (32)

Thus from equation (31) we have

〈n|β, z〉∣∣
z→0 = E(|β|2)−1/2 βn√

[n]!
(33)

which agrees with (7).
Let Nb be the ‘quasiparaboson’ number operator

Nb = 1
2(b
†b + bb†)− 1

2p = Uz
(

1
2{a†, a} − 1

2p
)
U †z . (34)

ThenNb has discrete positive eigenvaluesn with ground state|0b〉:
Nb|nb〉 = n|nb〉 |nb〉 = Uz|n〉 Nb|0b〉 = 0. (35)

Similarly to |n〉, the states|nb〉 can be expressed in the form

|nb〉 = (b†)n√
[n]!
|0b〉. (36)

They are complete orthonormal. The operatorb acts as the lowering operator for|nb〉. In
this basis the TPCS|β, z〉 are given by the simple expression

〈nb|β, z〉 = 〈n|β〉 = E(|β|2)−1/2 βn√
[n]!

. (37)

To conclude this section let us calculate the scalar product of two states|α, z〉 and|β, z′〉,
where

|α, z〉 = Uz|α〉 |β, z′〉 = Uz′ |β〉 (38)
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(z = reiϕ, z′ = r ′eiϕ′), which are generated from the parabose coherent states|α〉 and|β〉 via
different unitary transformationsUz = exp

(
1
2za

2− 1
2z
∗a†2

)
andUz′ = exp

(
1
2z
′a2− 1

2z
′∗a†2

)
,

respectively. By virtue of (24), we have

U †z Uz′ = exp(e−iϕ tanhrK+) exp(−2 ln coshrK0) exp(−eiϕ tanhrK−)

× exp(−e−iϕ′ tanhr ′K+) exp(−2 ln coshr ′K0) exp(eiϕ′ tanhr ′K−) (39)

which leads to

〈α, z|β, z′〉 = exp

(
e−iϕ tanhr

α∗2

2
+ eiϕ′ tanhr ′

β2

2

)
×〈α| exp(−2 ln coshr K0) exp(−eiϕ tanhr K−)

× exp(−e−iϕ′ tanhr ′K+) exp(−2 ln coshr ′K0)|β〉. (40)

Noting

exp

(
− ln coshr

{a†, a}
2

)
|α〉 = (coshr)−p/2E(|α|2)−1/2E

(∣∣∣∣ α

coshr

∣∣∣∣2)1/2∣∣∣∣ α

coshr

〉
(41)

and using the formula (see the appendix)

exp(τ K−) exp(λK+) = exp

(
λ

1− λτ K+
)

exp(−2 ln(1− λτ)K0) exp

(
τ

1− λτ K−
)

(42)

we finally obtain

〈α, z|β, z′〉 =
(

coshr coshr ′ − ei(ϕ−ϕ′) sinhr sinhr ′
)−p/2

E(|α|2)−1/2E(|β|2)−1/2

×E
(

α∗β
coshr coshr ′ − sinhr sinhr ′ exp

(
i(ϕ − ϕ′))

)

× exp

(
e−iϕ coshr ′ sinhr − e−iϕ′ coshr sinhr ′

coshr coshr ′ − sinhr sinhr ′ exp
(
i(ϕ − ϕ′)) α∗22

− eiϕ coshr ′ sinhr − eiϕ′ coshr sinhr ′

coshr coshr ′ − sinhr sinhr ′ exp
(
i(ϕ − ϕ′)) β2

2

)
. (43)

Similarly we also have

〈n|mb〉 = 〈n|Uz|m〉

= (coshr)−(2m+p)/2([n]![m]!)1/2

×
[n/2]∑
k=0

[m/2]∑
l=0

(−)k( 1
2 tanhr)l+kei(l−k)ϕ(coshr)2l

k! l!
√

[n− 2k]! [m− 2l]!
δn−2k,m−2l (44)

which shows thatn andm must be both even or both odd integers in order for〈n|mb〉 to
be non-vanishing. Thus only an even number of parabosons would be counted for the state
|0b〉 = |0, z〉.
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4. Uncertainty relations and squeezing properties

In this section, we discuss some properties of the TPCS defined in section 2. Introducing
Hermitian operatorsX andP defined by

X = a + a†√
2

P = a − a†√
2i

(45)

we see that the commutator ofX andP is given by [X,P ] = i[a, a†], and the Hamiltonian
of a free parabose sustem with a single degree of freedom can be written as

H = 1
2(a
†a + aa†) = 1

2(X
2+ P 2). (46)

The expectation values of the operatorsX andP in the TPCS can easily be calculated:

〈X〉 = 〈β, z|X|β, z〉 = 1√
2

(
(coshr − eiϕ sinhr)β + (coshr − e−iϕ sinhr)β∗

)
〈P 〉 = 〈β, z|P |β, z〉 = 1√

2i

(
(coshr + eiϕ sinhr)β − (coshr + e−iϕ sinhr)β∗

)
.

(47)

Similarly, we have

〈H 〉 = 〈β, z|H |β, z〉

= cosh 2r

(
|β|2+ 1

2
+ p − 1

2
E(|β|2)−1E(−|β|2)

)
− sinh 2r

(
1
2β

2eiϕ + 1
2β
∗2e−iϕ

)
. (48)

Noting thatX2 = H + 1
2(a

2+ a†2) andP 2 = H − 1
2(a

2+ a†2), we can write

〈X2〉 = 〈β, z|X2|β, z〉
= 1

2

(
(coshr − sinhreiϕ)β + (coshr − sinhre−iϕ)β∗

)2

+ 1
2 (cosh 2r − sinh 2r cosϕ)

(
1+ (p − 1)E(|β|2)−1E(−|β|2))

〈P 2〉 = 〈β, z|P 2|β, z〉
= − 1

2

(
(coshr + sinhreiϕ)β − (coshr + sinhre−iϕ)β∗

)2

+ 1
2 (cosh 2r + sinh 2r cosϕ)

(
1+ (p − 1)E(|β|2)−1E(−|β|2)) .

(49)

Thus the variances of the operatorsX andP in the TPCS are of the form

〈(4X)2〉 ≡ 〈X2〉 − 〈X〉2

= 1
2 (cosh 2r − sinh 2r cosϕ)

(
1+ (p − 1)E(|β|2)−1E(−|β|2))

〈(4P)2〉 ≡ 〈P 2〉 − 〈P 〉2

= 1
2 (cosh 2r + sinh 2r cosϕ)

(
1+ (p − 1)E(|β|2)−1E(−|β|2))

(50)

which lead to

〈(4X)2〉〈(4P)2〉 = 1
4

(
1+ (sinh 2r)2(sinϕ)2

) (
1+ (p − 1)E(|β|2)−1E(−|β|2))2

. (51)

Using equation (4) we have〈β, z|[a, a†]|β, z〉 = 〈β|[a, a†]|β〉. Noting that−i〈[X,P ]〉 =
〈[a, a†]〉 = 〈β, z|[a, a†]|β, z〉 and comparing [10] with

〈β|[a, a†]|β〉 = 1+ (p − 1)E(|β|2)−1E(−|β|2) (52)
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we find that

〈(4X)2〉〈(4P)2〉 = 1
4

(
1+ (sinh 2r)2(sinϕ)2

) |〈[X,P ]〉|2 > 1
4 |〈[X,P ]〉|2 (53)

which shows that for TPCS, whenz is real (ϕ = 0), the uncertainty relation reduces to an
equality. However, since [X,P ] is in general not a c-number, the right-hand side of (53)
itself depends on the given state. Hence the TPCS are not the minimum uncertainty states
in the absolute sense (except for thep = 1 case). On the other hand, since the variance of
the operatorsX andP in the parabose coherent state|β〉 is [10]

〈β|(4X)2|β〉 = 〈β|(4P)2|β〉 = 1
2

(
1+ (p − 1)E(|β|2)−1E(−|β|2)) (54)

it is obvious from (50) that

〈β, z|(4X)2|β, z〉=(cosh 2r − sinh 2r cosϕ) 〈β|(4X)2|β〉
〈β, z|(4P)2|β, z〉=(cosh 2r + sinh 2r cosϕ) 〈β|(4P)2|β〉

(55)

which mean that the case

〈β, z|(4X)2|β, z〉 6 〈β|(4X)2|β〉 or 〈β, z|(4P)2|β, z〉 6 〈β|(4P)2|β〉 (56)

may occur for some ranges of the parameterz and the TPCS may exhibit ‘squeezing’ effects
for these cases. It is only in this sense that we also call|β, z〉 the parabose squeezed state.

Finally, we consider the time evolution for the case of a free parabose oscillator initially
in the state|β, z〉. In the Schr̈odinger representation, the state at timet which evolves from
|β, z〉 at t = 0 is given by |β, z; t〉 = exp(−iHt)|β, z〉. H is the Hamiltonian operator
H = 1

2 ω {a†, a} governing the system involved. Thus we have

i
∂

∂t
|β, z; t〉 = H |β, z; t〉 (57)

and

|β, z; t〉 = e−iHt |β, z〉

= exp
(− 1

2iωt{a†, a})Uz exp
(

1
2iωt{a†, a}) exp

(− 1
2iωt{a†, a}) |β〉

= exp
(

1
2ze

2iωta2− 1
2z
∗e−2iωta†2

)
e−ipωt/2|βe−iωt 〉

= e−ipωt/2Uze
2iωt |βe−iωt 〉 (58)

where the relation exp
(− 1

2iωt{a†, a})|β〉 = e−ipωt/2|βe−iωt 〉 has been used. From
equation (58) we see that|β, z; t〉 is still a two-paraboson coherent state with time-dependent
parametersze2iωt andβe−iωt in place of the initially time-independent onesz andβ.

Note added in proof. The author would like to thank one of the referees for drawing to his attention a paper by
Bagchi and Bhaumik [13], in which a similar topic was discussed in different way.
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Appendix A. Proof of equation (42)

Using equations (23) it can easily be seen that

exp(−λK+)K− exp(λK+) = K− + 2λK0+ λ2K+ (A1)

which leads to

exp(τK−) exp(λK+) = exp(λK+) exp(λ2τK+ + 2λτK0+ τK−). (A2)

Let us introduce a real parametert and write

exp
(
t (λ2τK+ + 2λτK0+ τK−)

) = exp(p+(t)K+) exp(p0(t)K0) exp(p−(t)K−) (A3)

wherep+(t), p0(t) andp−(t) are functions to be determined which subject to the constraints
p+(0) = p0(0) = p−(0) = 0. Differentiating (A3) with respect tot , we have

(λ2τK+ + 2λτK0+ τK−) exp
(
t (λ2τK+ + 2λτK0+ τK−)

)
= p′+K+ exp(p+K+) exp(p0K0) exp(p−K−)

+p′0 exp(p+K+)K0 exp(p0K0) exp(p−K−)

+p′− exp(p+K+) exp(p0K0)K− exp(p−K−) (A4)

where the primes indicate differentiation with respect tot . Multiplying from the right by

exp
(−t (λ2τK+ + 2λτK0+ τK−)

) = exp(−p−(t)K−) exp(−p0(t)K0) exp(−p+(t)K+)
(A5)

we obtain

λ2τK+ + 2λτK0+ τK−
= (p′+ − p′0p+ + p2

+p
′
−e−p0)K+ + (p′0− 2p+p′−e−p0)K0+ p′−e−p0K− (A6)

where the commutation relation (23) of su(1, 1) are used. We identify the coefficients of
the respective basis elements of the su(1, 1) Lie algebra and obtain a system of coupled
nonlinear equations:

p′− e−p0 = τ
p′0− 2p+ p′− e−p0 = 2λ τ

p′+ − p′0p+ + p2
+ p
′
− e−p0 = λ2 τ

(A7)

with the initial conditionsp+(0) = p0(0) = p−(0) = 0. Eliminating e−p0 from these three
equations, we obtain

p′0 = τ p+ + 2λ τ p′+ − 2λ τ p+ − τ p2
+ = λ2 τ. (A8)

Making the substitutionp+ = y/τ , y(0) = 0, followed byy = −u′/u, u′(0) = 0, u(0) = 1,
we transform the last equation of (A8) into the second-order, ordinary differential equation

u′′ − 2λ τu′ + λ2 τ 2 u = 0 (A9)

with constant coefficients. Its solution is

u = eλ τ t − λ τ t eλ τ t (A10)

which leads toy = (λ2 τ 2 t)/(1− λ τ t) and further to

p+ = λ2 τ t

1− λ τ t p0 = −2 ln(1− λ τ t) p− = τ t

1− λ τ t . (A11)
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Thus whent = 1 equation (A3) becomes

exp(λ2 τ K+ + 2λ τ K0+ τ K−)

= exp

(
λ2 τ

1− λ τ K+
)

exp(−2 ln(1− λ τ)K0) exp

(
τ

1− λ τ K−
)
. (A12)

Substituting this expression in (A2) we arrive at equation (42).
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